Olimpíada Brasileira de Química - 2009

MODALIDADE A ($\mathbf{1}^{\circ}$ e $\mathbf{2}^{\circ}$ anos)

PARTE A - QUESTÕES MÚLTIPLA ESCOLHA

1. O gás SO_{2} é formado na queima de combustíveis fósseis. Sua liberação na atmosfera é um grave problema ambiental, pois através de uma série de reações ele irá se transformar em $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, um ácido muito corrosivo, no fenômeno conhecido como chuva ácida. A sua formação pode ser simplificadamente representada por:

$$
\mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{SO}_{2}(\mathrm{~g})
$$

Quantas toneladas de dióxido de enxofre serão formadas caso ocorra a queima de uma tonelada de enxofre? (dados $S=32 \mathrm{~g} / \mathrm{mol}$ e $\mathrm{O}=16 \mathrm{~g} / \mathrm{mol}$)
a) 1 tonelada
b) 2 toneladas
c) 3 toneladas
d) 4 toneladas
e) 5 toneladas
02. Uma partida de voleibol da liga mundial teve a duração de 3 horas. Após o jogo, os atletas do país vencedor foram comemorar em um restaurante, onde cada atleta consumiu em média, um valor energético de 6.300 kJ de alimentos. Sabendo-se que no voleibol cada jogador gasta por hora, em média, 1.400 kJ de energia,quanto tempo ele deverá treinar para iniciar a próxima partida na mesma forma física da anterior ?
a) 3,0 horas
b) 6,0 horas
c) 1,0 hora
d) 1,5 hora
e) 2,5 horas
03. Nas condições ambiente, ao inspirar, puxamos para nossos pulmões aproximadamente, $0,5 \mathrm{~L}$ de ar, então aquecido na temperatura ambiente de $25^{\circ} \mathrm{C}$ até a temperatura do corpo de $36^{\circ} \mathrm{C}$. Fazemos isso cerca de 16×10^{3} vezes em 24 horas. Se, nesse tempo, recebermos por meio da alimentação, $1,0 \times 10^{7} \mathrm{~J}$ de energia, a porcentagem aproximada desta energia que será gasta para aquecer o ar inspirado será de:
Ar atmosférico nas condições ambiente:
densidade $=1,2 \mathrm{~g} / \mathrm{L}$, calor específico $=1,0 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$
a) $3,0 \%$
b) $2,0 \%$
c) $1,0 \%$
d) $10,0 \%$
e) $15,0 \%$
04. Realizaram-se dois experimentos de combustão de uma amostra de 1 g de magnésiopara avaliar o rendimento do óxido de magnésio produzido: o primeiro em oxigênio puro e o segundo ao ar. No primeiro experimento observou-se um acréscimo de $0,64 \mathrm{~g}$ no peso da amostra, enquanto que no segundo, aumentou menos que $0,64 \mathrm{~g}$ no peso da amostra. Essa diferença ocorreu por que:
a) a combustão ao ar é incompleta
b) houve um erro na pesagem do produto do segundo experimento
c) a combustão ao ar leva à formação de sub-produtos
d) o magnésio reage com o CO_{2} presente no ar
e) parte do óxido formado foi consumido na reação reversível.
05. Uma solução saturada de nitrato de potássio $\left(\mathrm{KNO}_{3}\right)$ constituída, além do sal, por 100 g de água, está à temperatura de $70^{\circ} \mathrm{C}$. Essa solução é resfriada a $40^{\circ} \mathrm{C}$, ocorrendo precipitação de parte do sal dissolvido. Com base nesses dados e no gráfico apresentado abaixo:
Gráfico da solubilidade do nitrato de potássio em função da temperatura.

Pode-se afirmar que a massa de sal que precipitou foi de aproximadamente:
a) 20 g
b) 40 g
c) 60 g
d) 80 g
e) 100 g
06. Um elemento X ocorre na forma moléculas diatômicas, $X_{2^{\prime}}$ com massas 70,72 e 74 e abundâncias relativas na razão de $9: 6: 1$, respectivamente. Com base nessas informações analise as afirmações abaixo:
I) o elemento X possui três isótopos
II) a massa atômica média desse elemento é 36
III) esse elemento possui um isótopo de massa 35 com abundância de 75%
IV) esse elemento é o cloro

Estão corretas:
a) todas as afirmações
b) apenas as afirmações I e II
c) apenas as afirmações II e IV
d) apenas as afirmações III e IV
e) apenas a afirmação I
07. Os produtos da combustão do $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ são $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ e $\mathrm{SO}_{2}(\mathrm{~g})$. Usando as informações dadas nas equações termoquímicas abaixo:

$$
\begin{array}{lll}
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{~s}) & \rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) & \Delta \mathrm{H}=-21 \mathrm{~kJ} \\
\mathrm{~S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) & \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=-297 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) & \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=-242 \mathrm{~kJ}
\end{array}
$$

Conclui-se que a energia desprendida na combustão de 1 mol de $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ é:
a) -67 kJ
b) 34 kJ
c) -560 kJ
d) -34 kJ
e) -518 kJ
08. Com relação às equações iônicas abaixo:
I) $\mathrm{Fe}^{3+}+\mathrm{Cu} \quad \rightarrow \quad \mathrm{Fe}^{2+}+\mathrm{Cu}^{2+}$
II) $2 \mathrm{I}^{-}+\mathrm{Br}_{2} \rightarrow \quad \mathrm{I}_{2}+2 \mathrm{Br}$
III) $3 \mathrm{I}_{2}+6 \mathrm{OH}^{-} \rightarrow \quad \mathrm{I}^{-}+\mathrm{IO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$

Estão CORRETAS:

a) todas
b) apenas I e II
c) apenas I e III
d) apenas II e III
e) nenhuma
09. Com relação ao aquecimento de um mol de gás O_{2} encerrado em um cilindro com um pistão que se move sem atrito:
I. A massa específica do gás permanece constante.
II. A energia cinética média das moléculas aumenta.
III. A massa do gás permanece a mesma.

Das afirmações feitas, estão CORRETAS
a) I, II e III.
b) apenas I.
c) apenas II.
d) apenas II e III
e) Nenhuma.
10. Para neutralizar $1,0 \mathrm{~mL}$ de ácido clorídrico com $\mathrm{pH}=4,0$, o volume necessário de hidróxido de sódio com $\mathrm{pOH}=5,0$ é igual a:
a) 8 mL
b) 10 mL
c) 16 mL
d) 20 mL
e) 40 mL

Questão 11 (BELARUS CHEMISTRY OLYMPIAD 2009)
O crescimento e o desenvolvimento normal das plantas exigem a presença de vários minerais entre os quais os chamados macronutrientes (nitrogênio, fósforo e potássio) são particularmente importantes. Estes macronutrientes podem ser fornecidos sob a forma de "um composto fertilizante" ou "NPK", tipo $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}+\mathrm{KNO}_{3}$. De acordo com as normas da agroindústria, cada $1,0 \mathrm{~m}^{2}$ de solo recém-preparado deve conter $5,0 \mathrm{~g}$ de nitrogênio, $5,0 \mathrm{~g}$ de fósforo e $4,0 \mathrm{~g}$ de potássio.

1) Calcule a composição percentual em massa de uma mistura de nitrato de potássio e fosfato de amónio que seria ideal para atender os requisitos acima. 2) Uma pequena fazenda não tem o fertilizante NPK, mas tem em estoque outros produtos químicos, incluindo $\mathrm{KCl}, \mathrm{NaNO}_{3^{\prime}} \mathrm{NH}_{4} \mathrm{NO}_{3^{\prime}} \mathrm{CaHPO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. Quais destes compostos e em que medida devem ser combinados para preparar fertilizante NPK em quantidade suficiente para tratar 30 ha? Suponha que cada um dos ingredientes listados contém 2% de impureza em massa. Encontrar uma solução ótima, ou seja, a composição que minimiza a massa total da mistura e, portanto, reduz custos de transporte.

Questão 12 (NATIONAL GERMANY COMPETITION 2009)
O uso do modelo da REPULSÃO DOS PARES DE ELÉTRONS DA CAMADA DE VALÊNCIA é um bom caminho para predizer a geometria de pequenas moléculas, sem a necessidade de usar modernas teorias e computadores potentes. a) Usando este modelo prediga as estruturas dos seguintes compostos: difluoreto de xenônio, tetrafluoreto de xenônio, trióxido de xenônio, tetróxido de xenônio, trifluoreto de boro e tetrafluoreto de enxofre.
b) Em cada caso, explique se a estrutura é ou não é distorcida em relação à geometria ideal.
c) Represente, em cada caso, os pares de elétrons não ligantes sobre o átomo central se existirem.
d) Sugira equações para as sínteses dos fluoretos de xenônio mencionados em (a) e para o trióxido de xenônio, este último a partir do hexafluoreto de xenônio.
e) Explique porque os gases nobres hélio, neônio e argônio não formam tais compostos em similares condições.

Questão 13

A reação de metanol a partir de hidrogênio e monóxido de carbono (equação abaixo) é é exotérmica:

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

Essa reação está em equilíbrio a 500 K e 10 bar. Assumindo que todos os gases são ideais, prediga as mudanças observadas nos valores de:
a) Kp
b) pressão parcial de $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
c) número de mols de $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
d) fração molar de $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$

Quando, acontece cada um dos seguintes eventos:

1) a temperatura é aumentada
2) a pressão é aumentada
3) um gás inerte é adicionado a volume constante
4) $\mathrm{CO}(\mathrm{g})$ é adicionado a pressão constante

Questão 14

Considere as seguintes informações:
I) Um composto A reage com um gas B, formando um gás venenoso C, com densidade específica igual a $2,321 \mathrm{~g} / \mathrm{L}$.
II) Quando A reage com o gás D forma-se o gás E, um outro gás venenoso.
III) A reação do composto E com o composto F produz o composto G, extremamente venenoso e que é um ácido fraco.
IV) O composto A e os gases B e D são compostos elementares, sendo Be D diatômicos.
V) O composto G pode ser sintetizado a partir da reação de C com hidrogênio.
VI) A combustão de F, ao ar, leva à formação do gás B
a)Identifique os compostos de A a G
b) Escreva as equações das citadas acima, em I, II, III, V e VI.

Questão 15

10 mL de solução de sulfato de amônio foram tratados com excesso de hidróxido de sódio. O gás que se formou foi absorvido em 50 mL de ácido clorídrico $0,100 \mathrm{~mol} / \mathrm{L}$. Na titulação do excesso de ácido clorídrico foram gastos $21,5 \mathrm{~mL}$ de hidróxido de sódio $0,098 \mathrm{~mol} / \mathrm{L}$.
a) escreva as equações químicas das reações citadas no texto
b) Calcule a concentração, em quantidade de matéria ($\mathrm{mol} / \mathrm{L}$), da solução de sulfato de amônio?

Questão 16

Analise a figura abaixo, e corrija o texto explicativo desta ilustração. Reescreva o texto GRIFANDO o que você corrigiu:

A destilação fracionada é um processo de separação que se baseia na densidade dos componentes de uma mistura sólida. A solução é aquecida até a ebulição, ocorrendo a vaporização apenas da fase que possui menor densidade. O vapor, ao ser expulso do balão volumétrico, dirige-se para a coluna de fracionamento, que é refrigerado com água; a água entra pela parte superior da coluna de fracionamento, resfriando o vapor que retorna ao estado sólido. Este sólido é recolhido num balão de destilação.

GABARITO

Modalidade A

Questão	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
Resposta	B	D	C	C	D	D	E	D	D	$\mathrm{B} *$

* Anulada

Modalidade B

Questão	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
Resposta	C	E	B	C	D	D	D	D	D	A

Olimpíada Brasileira de Química - 2009

MODALIDADE B ($\mathbf{3}^{\circ}$ ano)

PARTE A - QUESTÕES MÚLTIPLA ESCOLHA

1. Nas condições ambiente, ao inspirar, puxamos para nossos pulmões aproximadamente, 0,5L de ar, então aquecido na temperatura ambiente de $25^{\circ} \mathrm{C}$ até a temperatura do corpo de $36^{\circ} \mathrm{C}$. Fazemos isso cerca de 16×10^{3} vezes em 24 horas. Se, nesse tempo, recebermos por meio da alimentação, $1,0 \times 10^{7} \mathrm{~J}$ de energia, a porcentagem aproximada desta energia que será gasta para aquecer o ar inspirado será de:
Ar atmosférico nas condições ambiente:
densidade $=1,2 \mathrm{~g} / \mathrm{L}$, calor específico $=1,0 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$
a) $3,0 \%$
b) $2,0 \%$
c) $1,0 \%$
d) $10,0 \%$
e) $15,0 \%$
2. Os produtos da combustão do $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ são $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ e $\mathrm{SO}_{2}(\mathrm{~g})$. Usando as informações dadas nas equações termoquímicas abaixo:

$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{s})$	$\rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	$\Delta \mathrm{H}=-21 \mathrm{~kJ}$
$\mathrm{~S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$	$\rightarrow \mathrm{SO}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}=-297 \mathrm{~kJ}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$	\rightarrow	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Conclui-se que a energia desprendida na combustão de 1 mol de $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ é:
a) -67 kJ
b) 34 kJ
c) -560 kJ
d) -34 kJ
e) -518 kJ
03. O gás SO_{2} é formado na queima de combustíveis fósseis. Sua liberação na atmosfera é um grave problema ambiental, pois através de uma série de reações ele irá se transformar em $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, um ácido muito corrosivo, no fenômeno conhecido como chuva ácida. A sua formação pode ser simplificadamente representada por:

$$
\mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{SO}_{2}(\mathrm{~g})
$$

Quantas toneladas de dióxido de enxofre serão formadas caso ocorra a queima de uma tonelada de enxofre? (dados $S=32 \mathrm{~g} / \mathrm{mol}$ e $\mathrm{O}=16 \mathrm{~g} / \mathrm{mol}$)
a) 1 tonelada
b) 2 toneladas
c) 3 toneladas
d) 4 toneladas
e) 5 toneladas
04. Realizaram-se dois experimentos de combustão de uma amostra de 1 g de magnésio para avaliar o rendimento do óxido de magnésio produzido: o primeiro em oxigênio puro e o segundo ao ar. No primeiro experimento observou-se um acréscimo de $0,64 \mathrm{~g}$ no peso da amostra, enquanto que no segundo, aumentou menos que $0,64 \mathrm{~g}$ no peso da amostra. Essa diferença ocorreu por que:
a) a combustão ao ar é incompleta
b) houve um erro na pesagem do produto do segundo experimento
c) a combustão ao ar leva à formação de sub-produtos
d) o magnésio reage com o CO_{2} presente no ar
e) parte do óxido formado foi consumido na reação reversível.
05. Dentre as classes de compostos orgânicos citados a seguir
I) ácido carboxílico
II) éster
III) cetona
IV) aldeído

Podem ser obtidas a partir da reação de um anidrido orgânico com um álcool
a) Apenas I
b) Apenas II
c) Apenas III
d) 1 ell
e) III e IV
06. Um elemento X ocorre na forma moléculas diatômicas, X_{2}, com massas 70,72 e 74 e abundâncias relativas na razão de $9: 6: 1$, respectivamente. Com base nessas informações analise as afirmações abaixo:
I) o elemento X possui três isótopos
II) a massa atômica média desse elemento é 36
III) esse elemento possui um isótopo de massa 35 com abundância de 75%
IV) esse elemento é o cloro

Estão corretas:
a) todas as afirmações
b) apenas as afirmações I e II
c) apenas as afirmações II e IV
d) apenas as afirmações III e IV
e) apenas a afirmação ।
07. Uma partida de voleibol da liga mundial teve a duração de 3 horas. Após o jogo, os atletas do país vencedor foram comemorar em um restaurante, onde cada atleta consumiu em média, um valor energético de 6.300 kJ de alimentos. Sabendo-se que no voleibol cada jogador gasta por hora, em média, 1.400 kJ de energia,quanto tempo ele deverá treinar para iniciar a próxima partida na mesma forma física da anterior ?
a) 3,0 horas
b) 6,0 horas
c) 1,0 hora
d) 1,5 hora
e) 2,5 horas
08. Sobre o 3,5-dimetilciclopenteno, composto que contém 2 carbonos assimétricos, pode-se afirmar que:
a) Não apresenta estereoisômeros, porque é uma molécula simétrica
b) Apresenta apenas 2 isômeros, um par de enantiômeros
c) Apresenta apenas 2 isômeros, um par de diastereoisômeros
d) Apresenta 3 estereoisômeros, sendo um par de enantiômeros e uma molécula meso
e) Apresenta 4 estereoisômeros, correspodendo a 2 pares de enantiômeros
09. Uma solução saturada de nitrato de potássio $\left(\mathrm{KNO}_{3}\right)$ constituída, além do sal, por 100 g de água, está à temperatura de $70^{\circ} \mathrm{C}$. Essa solução é resfriada a $40^{\circ} \mathrm{C}$, ocorrendo precipitação de parte do sal dissolvido. Com base nesses dados e no gráfico apresentado abaixo:
Gráfico da solubilidade do nitrato de potássio em função da temperatura.

Pode-se afirmar que a massa de sal que precipitou foi de aproximadamente:
a) 20 g
b) 40 g
c) 60 g
d) 80 g
e) 100 g
10. Considerando a reação do propeno com:
(I) HCl
(II) $\mathrm{H}_{2} / \mathrm{Pt}$
(III) $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$
(IV) $\left(\mathrm{BH}_{3}\right)_{2} / \mathrm{THF}$

Assinale a alternativa que apresenta os produtos obtidos nessas reações:
a) (I) 2-cloropropano;
(II) propano;
(III) propan-2-ol
(IV) propan-1-ol
b) (I) 1-cloropropano;
(II) propino;
(III) propan-1-ol
(IV) propan-2-ol
c) (I) 1-cloropropano;
(II) propano;
(III) propanona
(IV) propan-1-ol
d) (I) 2-cloropropano;
(II) propano;
(III) propanona
(IV) propan-2-ol
e) (I) 1-cloropropano;
(II) propino;
(III) propan-2-ol
(IV) propanona

PARTE B - QUESTÕES ANALÍTICO-EXPOSITIVAS

Questão 11 (BELARUS CHEMISTRY OLYMPIAD 2009)
O crescimento e o desenvolvimento normal das plantas exigem a presença de vários minerais entre os quais os chamados macronutrientes (nitrogênio, fósforo e potássio) são particularmente importantes. Estes macronutrientes podem ser fornecidos sob a forma de "um composto fertilizante" ou "NPK", tipo $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}+\mathrm{KNO}_{3}$. De acordo com as normas da agroindústria, cada $1,0 \mathrm{~m}^{2}$ de solo recém-preparado deve conter $5,0 \mathrm{~g}$ de nitrogênio, $5,0 \mathrm{~g}$ de fósforo e $4,0 \mathrm{~g}$ de potássio.

1) Calcule a composição percentual em massa de uma mistura de nitrato de potássio e fosfato de amônio que seria ideal para atender os requisitos acima. 2) Uma pequena fazenda não tem o fertilizante NPK, mas tem em estoque outros produtos químicos, incluindo $\mathrm{KCl}, \mathrm{NaNO}_{3^{\prime}} \mathrm{NH}_{4} \mathrm{NO}_{3^{\prime}}, \mathrm{CaHPO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. Quais destes compostos e em que medida devem ser combinados para preparar fertilizante NPK em quantidade suficiente para tratar 30 ha? Suponha que cada um dos ingredientes listados contém 2% de impureza em massa. Encontrar uma solução ótima, ou seja, a composição que minimiza a massa total da mistura e, portanto, reduz custos de transporte.

Questão 12 (NATIONAL GERMANY COMPETITION 2009) O uso do modelo da REPULSÃO DOS PARES DE ELÉTRONS DA CAMADA DE VALÊNCIA é um bom caminho para predizer a geometria de pequenas moléculas, sem a necessidade de usar modernas teorias e computadores potentes. a) Usando este modelo prediga as estruturas dos seguintes compostos: difluoreto de xenônio, tetrafluoreto de xenônio, trióxido de xenônio, tetróxido de xenônio, trifluoreto de boro e tetrafluoreto de enxofre.
b) Em cada caso, explique se a estrutura é ou não é distorcida em relação à geometria ideal.
c) Represente, em cada caso, os pares de elétrons não ligantes sobre o átomo central se existirem.
d) Sugira equações para as sínteses dos fluoretos de xenônio mencionados em (a) e para o trióxido de xenônio, este último a partir do hexafluoreto de xenônio.
e) Explique porque os gases nobres hélio, neônio e argônio não formam tais compostos em similares condições.

Questão 13

A reação de metanol a partir de hidrogênio e monóxido de carbono (equação abaixo) é exotérmica:

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \quad \rightleftharpoons \quad \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

Essa reação está em equilíbrio a 500 K e 10 bar. Assumindo que todos os gases são ideais, prediga as mudanças observadas nos valores de:
a) Kp
b) pressão parcial de $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
c) número de mols de $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
d) fração molar de $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$

Quando, acontece cada um dos seguintes eventos:

1) a temperatura é aumentada
2) a pressão é aumentada
3) um gás inerte é adicionado a volume constante
4) $\mathrm{CO}(\mathrm{g})$ é adicionado a pressão constante

Questão 14

Considere as seguintes informações:
I) Um composto A reage com um gas B, formando um gás venenoso C, com densidade específica igual a $2,321 \mathrm{~g} / \mathrm{L}$.
II) Quando A reage com o gás D forma-se o gás E, um outro gás venenoso.
III) A reação do composto E com o composto F produz o composto G, extremamente venenoso e que é um ácido fraco.
IV) O composto A e os gases B e D são compostos elementares, sendo B e D diatômicos.
V) O composto G pode ser sintetizado a partir da reação de C com hidrogênio. VI) A combustão de F, ao ar, leva à formação do gás B
a) Identifique os compostos de A a G
b) Escreva as equações das citadas acima, em I, II, III, V e VI.

Questão 15

Indique os produtos assinalados com as letras de A a E, nas duas sequências de reações abaixo:
I) Fenol $+\mathrm{H}_{2} / \mathrm{Ni}, 200^{\circ} \mathrm{C}, 15 \mathrm{~atm} \rightarrow \quad$ Composto A

Composto $\mathrm{A}+\mathrm{H}_{2} \mathrm{SO}_{4^{\prime}}$ calor \rightarrow Composto B
Composto $\mathrm{B}+\mathrm{H}_{2} / \mathrm{Ni} \rightarrow$ Composto C
II) Tolueno $+\mathrm{KMnO}_{4} / \mathrm{H}^{+} \quad \rightarrow \quad$ Composto D

Composto D + $\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \quad$ Composto E

Questão 16

Um álcool $A\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right)$ quando aquecido com ácido, forma um produto gasoso B. Esse gás, quando tratado com ácido aquoso forma um novo álcool C. Bromo pode ser adicionado a B para produzir $D\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}_{2}\right)$.
a) Escreva as estruturas e os nomes dos compostos de A a D.
b) Escreva as equações químicas das reações citadas acima.

